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Problem and Examples 
Develop a general method for detecting monotone association 

in an unspecified subpopulation. 
Examples:  
1. Cancer cells in which gene expression controls chemo-

resistance  
A. Activity of Quassinoids correlated with expression of the IGFBP6 

gene over Ovarian and CNS cell-lines 
B. Newly differentiated cell-lines form an unanticipated subgroup 

over which several associations are discovered.  
2. Subpopulations of 210 US Designated Marketing Areas 

A.  sales are associated with specific types of advertizing 
campaigns, but only in certain DMAs 

B. retention is associated with economic descriptors, in some DMAs   
C. Results are replicated in different years, which some changes in 

the subpopulations involved. 



Basic Tau Path Formulation as an 
estimation problem 

Let F be a family of bivariate copula models 
(joint distributions with uniform margins) 
indexed by the population Kendall τ, defined 
by 
                  τ = E[sign(Xi - Xj) *sign(Yi - Yj) ] 

when (Xi, Yi) and (Xj, Yj) are independently sampled 
from Fτ    F  ∈



Underlying Model 

                    (Xi, Yi) ~ Fτi   , i = 1,…,n  
where  
 
for some permutation π: {1,…,n} → {1,…,n} . 
The problem is to estimate π based on  the 

sample      {(Xi, Yi)   | i = 1,…,n} 
Estimation is driven by the idea of concordance, 

which underlies Kendall’s τ. 
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Concordance 
 

{(Xi ,Yi) |i=1,…,n}   are assumed to be continuous variables,  
                                        with no two values exactly equal. 
 

Two observations i and j  
    are concordant with respect to (X,Y) if 
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and discordant if  



Kendall’s τ Correlation Coefficient 

• Definition: Let  
N = nC2 = n(n-1)/2 be the number of distinct pairs of 

observations in the sample of size n. 
C be the number of concordant pairs 
D be the number of discordant pairs 

   Then 
 N

DCt −
=

 is Kendall’s Coefficient for the sample.  



Kendall’s Test for Independence  
• Data:  A pair of variables (X, Y) measured on a sample 

from a population. 
• Null Hypothesis (H0): X and Y are independent in the 

population 
• Alternative Hypothesis HA: not all τi = 0 
• Test Statistic: Kendall’s t Coefficient for the sample  
• Sampling Distribution: of Kendall’s t Coefficient under 

H0 is well known. 
• Rejection Rule: Reject if test statistic is unusually high 

or low 

 



Extend Kendall’s Test 

• Idea: rearrange the order of observations so 
that the sets  of observations over which X 
and Y are most concordant appear early on in 
the re-sequenced data. 

• We need to look carefully at the details of how 
Kendall’s statistic is calculated. 



Concordance Matrix 

For a fixed (X, Y) pair, let 
 = [Cij]  = n x n concordance matrix 

        Cij    =    1 if cell-lines i and j are concordant 
         =  -1 if cell-lines i and j are discordant 
         =   0 if i = j  
Notes: 
–   is symmetric. 
– Kendall’s t coefficient  
  = average of the off diagonal elements of . 
 

 



tau−path 
 

• Let k denote the k x k matrix formed from the first k 
rows and columns of . 

• The average tk of the off diagonal elements of k +1 is 
Kendall’s τ coefficient of correlation for the 
subpopulation represented by the first k+1 cell lines. 

• The sequence (t1,…, tn-1 = t) is called a tau-path. 

 
by definition Kendall’s t  



Ordering of Observations 
We would like to re-order the cell-lines to make 

the tau-path (t1,…,tn-1) decreasing. 

11 −≥≥ nττ 

Example 
 Initial Ordering: 
          X = [1 2 3 4 5] 
          Y = [3 1 5 2 4] 
Tau-path starts 
    (-1,1/3,…) 
  



Re-Ordering of Observations 

<2 4 5 3 1> Re-ordering   <2 5 3 4 1> Re-ordering 
     X* = [2 4 5 3 1]   X** = [2 5 3 4 1] 
 Y* = [1 2 4 5 3]                                    Y** = [1 4 5 2 3] 
Tau path starts (1,1,…)  Tau path starts (1,1/3,…) 
 

 



Basic Backdrop Algorithm 
1. Set C0 = C, the original concordance matrix. 
2. At step j (j = 1, …, n-1)  

A. Let mj be the observation corresponding to the 
row/column of Cj-1 with the minimal sum 

B. Set π(n+1-j) = mj 

C. Let Cj be the matrix formed by removing row and column 
mj of Cj-1 . 

3. Set π(n) = the last remaining observation number. 

The average of the entries in Cj is non-decreasing in j.  
Other good properties come from handling ties carefully. 

 



Example 
• X = [1 2 3 4 5]  Y = [3 1 5 2 4] 
       Concordance Matrix 

 0   -1    1   -1    1 
-1    0    1    1    1 
 1    1    0   -1   -1 
-1    1   -1    0    1 
 1    1   -1    1    0 

<2 4 5 3 1> Reordered Concordance Matrix 
   0    1    1    1   -1 
 1    0    1   -1   -1 
 1    1    0   -1    1 
-1   -1    1    0    1 
 1   -1   -1    1    0 

τ−path: 
(-1,1/3,0,1/5) 

τ−path: 
(1,1,1/3,1/5) 



 
More Refined Algorithms 

 • Fast Backward Conditional Search (BCS) Algorithm  
– Very quick estimation of π 
– “locally admissible” not dominated by nearby estimates 
– Good for screening to detect any significant association 

• Full BCS Algorithm for estimating π 
– Slower, but still reasonably fast for a few pairs 
– Admissible 
– Good for estimating associated subset after detecting high 

association.  
• For details, get a copy of the paper  

– Yu, L., Verducci, J. and Blower, P. “The Tau-Path Test for Monotone Association 
in an Unspecified Subpopulation: Applications to Chemogenomic Data Mining,” 
Statistical Methodology Special Issue on Data Mining, 2011. 

 



 
Nonparametric Development 

 
• Non-parametric Mixture Model 

– Two “association-homogeneous” components 
1. (X,Y) have common population τ*  
2. (X,Y) are independent 

– Proportion of observations in which (X,Y) are 
associated is not known 

• Hypothesis Test 
– Null Hypothesis is that (X,Y) are independent 
– Test should be sensitive to this particular type of 

diversion from independence. 







 Tau Path: Rejection Bounds for the test 
• Generate a large number of independent n-dimensional 

samples from two independent populations. 

• Estimate π, and the resulting ordered Tau-Path, for each 
sample. 

• Construct (1-α)th  percentile of the sampling distribution of 
each element in ordered Tau-Path to obtain upper boundary. 

• Reflect about axis to obtain lower boundary, which will be used 
to detect a decreasing relationship when the Tau-Path is 
reordered to be decreasing in discordance. 

• Thus at any point k along the boundary, 100α percent of the 
decreasing in concordance paths are expected to exceed the 
upper boundary by chance; and 100α percent of the 
decreasing in concordance paths are expected to exceed the 
lower boundary by chance. 
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 Tau Path: Graph of Boundary 
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sample path 

upper boundary 

lower boundary 



Tau Path: Recalibration of the Boundary 

 
• Pathwise Confidence: 

– Generate large number of independent n-dimensional samples from 
two independent populations 

– For the previously constructed  boundary, determine the number of 
sample Tau-Paths that break the boundary at any point k, and calibrate 
the pointwise significance value α to obtain pathwise significance α*. 

 
• For observed data, obtain (positive and negative) Tau-Path, and reject H0 if 

it breaks either boundary at any k. 

22 



Tau Path: Stopping Rule: “Top K” 
• Goal: Determine an ‘optimal’ choice k* for the number of observations in the 

subsample A under which X and Y are associated. 

• Issues:  
– The tau path itself is not particularly informative 

• First break of the boundary 
• Largest gap from path to boundary (what scale?) 

– It’s usually best to overestimate k* because false positives are unavoidable.  

• Idea (new point of view):  Let  
– ω be the ranking of [X1,…,Xn] after reordering the observations (by π)  
– ν be the ranking of [Y1,…,Yn] after reordering the observations (by π)  
– Decompose the ranking ν given ω into independent stages, and find the 

stage at which ω is informative for ν. This gives an estimate kω for k*. 
– Symmetrize by switching the roles of ω and ν; this gives an estimate kν . 
– Use max(kω, kν) 
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Tau Path: Multistage Model for Stopping Rule 

Assume ν is random with distribution centered at the true ranking ω, and n 
observations are ordered in sequence:  

• Stage 1: Pick ith best of all objects (according to ω),  
                                      incurring cost 

 
 
 

 
• Stage j∈{2,…,n-1} :  Pick ith best of remaining objects,  
                                    incurring cost: 

 
 
 
 

 
Assume that       are independent. 

24 Source: Arial 9 pt. Flush left; Source, e.g. publication  name. Title of source document. Date. URL if needed. 

( ) ( )1,0r  ,
1
1)( 1}1,,0{11

1

1
1 ∈








−
−

== −− vIr
r
rvVP n

v
n 

( ) ( )1,0r  ,
1
1

)( j},,0{1 ∈










−

−
== −− vIr

r
r

vVP jn
v
jn

j

j
j 

1−== iVj ν

11 −== iV ν

( )11 ,, −nVV 



Tau Path: Multistage Model (continued) 
 

• With a few additional assumptions (notably, assuming a common value 
for         over a window of length w),  

     we obtain local MLEs   
 

• The limiting distribution for Vj as θ → 0 is uniform on {0,…, n-k} 
 ⇒ Determine k∗  so that: 
 

Simple Estimator for kω: 
 
 
where q(j) denotes a αth quantile of 
  

25 Source: Arial 9 pt. Flush left; Source, e.g. publication  name. Title of source document. Date. URL if needed. 

θθ =−= jj rlog

*kj allfor  0  ,0* >=> jk θθ

0 if ,ˆ
1 === −+wjjj θθθ 

( ) ( ){ }kjjqkqk kk ><>   theof k)-(nbut  allfor  ,ˆmin αθθ

jθ̂



Kendall’s .05  
Acceptance 
Interval. 

τ-path .05 
Acceptance 
Region       related to the 

distribution of the LIS 



Measuring Performance: Power 
• Pick some configuration of interest. 

– (X,Y) normally distributed 
– In k of the pairs, X and Y have correlation ρ = .9 
– In the remaining (60 – k) of the pairs, X and Y are 

independent 
• Generate 1000 samples from this distribution 

– In what percentage of these sample does the τ-path test 
reject? 

– In what percentage does the standard Kendall tau test 
reject? 









Extension to large samples 
(Asymptotics) 

• Recall, the rejection bounds for the Tau-Path test are 
obtained by generation of a large number independent  
n-dimensional samples from two independent populations 
 

• This is computationally reasonable for analysis on 210 DMAs, but for 
agency-level analysis n is at least an order of magnitude larger. 
 

• We can avoid this simulation step by obtaining an  
approximate functional form for the Tau-Path Boundary 
as a function of only n and pointwise (or pathwise)  
significance α. 

31 



Asymptotics: Approximating the Boundary  
• The boundary curve is only defined at discrete points k∈{2,…,n}, so 

let        denote the (Upper) Tau-Path Boundary with 
pointwise significance α. 

 

• On the basis of simulation results, a reasonable approximation for the 
boundary is given by the following hierarchical relationships: 
 
 
 
 
 
 
 

• In this formulation, the rejection bounds depend on α only through a0 
– Current Work: obtain form for this term that is appropriately 

sensitive to the significance level 
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Asymptotics: Estimating the Boundary  
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Marginal Distributions of the tk 

• To understand better the nature of the 
boundaries, we try to find the marginal 
distributions of the tk (k =2,…,n) 

• Work on the scale pk = (tk + 1)/2 with range (0,1) 
• It is difficult to get a recurrence relationship 

because of the increasing dependencies among 
the column sums of the concordance matrices 
as minimal  





Beta Approximations to the pk Distributions 

 













Let   U = FX(X) ~ Uniform(0,1) 
 and V = FY(Y) ~ Uniform(0,1) be independent 

A related approach using order statistics 

Minimal 
point 

Note:  
Using empirical estimates 
for FX  and FY reduces the 
order statistics to ranks. 
 



 
Generate a sample {(Ui, Vi) |i =1,…n} as follows: 

  1. Generate  Si ~ 2(1-s)     0 < s < 1   
   This corresponds to |Ui+Vi-1|  
  2. Generate Di ~(1-si)Uniform(0,1) 
                     This corresponds to =|Vi-Ui|  
   3. Randomly reflect in each of the lines V=U, V=-U.     

The jth minimal point is the one with the jth smallest value among 
                                 { di / (1-si) | i = 1,…, n } 

To generate a jth minimal point: 
    S ~ 2(1-s)  
   Dj|s ~ (1-s)Beta(j,n+1-j) 
 

Alternative Generation Defining Minimal Points 



U, V ~ Unif(0,1)      S = |U+V-1| ~ 2(1-s)      D =|V-U|     Dj|s ~ (1-s)Beta(j,n+1-j) 

U 

V 

s 
1-

s 

d 

Truncated uniform probability of concordance with j-th min point x from a sample of n  

Reflected point 



The Distribution of Pj for Stage j 
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Dj and S are independent. 

j=1,…n-2 
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